
Haskell and OpenCV: theory and practice

Francesco Mazzoli <f@mazzo.li>

October 2016



A year ago, I talked about a problem...

• To get things done in many fields you need access to
well-established libraries.

• Accessing these libraries from Haskell is cumbersome, if
at all possible.

• Thus, prototyping and iterating on Haskell code that uses
foreign code is annoying.



OpenCV

• Kitchen-sink library for computer vision.
• If you need some algorithm in that space, OpenCV

probably has it.
• From standard image filters, to features detection, to face

recognition, to more practical utilities such as decoding
images from files or processing a webcam feed.



OpenCV’s main type: Mat

• OpenCV’s main type is cv::Mat. It is used to represent
both images and matrices used to express
transformations.

• The Haskell bindings encode a great deal of information
about a cv::Mat at the type level, which is very helpful for
both safety and documentation.



OpenCV’s main type: Mat

data Mat shape channels depth

• shape: the shape of the matrix, for example [3, 3] for a
3 by 3 matrix.

• channels: how many channels the matrix has, for
example 3 for an RGB image.

• depth: the type of the scalars in the matrix, for example
Double or Word8



OpenCV’s main type: Mat

data Mat
(shape :: [Nat])
(channels :: Nat)
(depth :: *)

What do we do if we don’t know some of the parameters at
compile time?



OpenCV’s main type: Mat

-- | 'D'ynamically or 'S'tatically known values
data DS a

= D -- ^ Something is dynamically known
| S a -- ^ Something is statically known

data Mat
(shape :: DS [DS Nat])
(channels :: DS Nat)
(depth :: DS *)



OpenCV’s main type: Mat

-- RGB image of some dimension
Mat (S [D, D]) (S 3) (S Word8)

-- RGBA image of known dimension
Mat (S [S 480, S 680] (S 4) (S Word8)

-- Affine transformation matrix
Mat (S [S 2, S 3]) (S 1) (S Double)

-- Array of floats
Mat (S [D]) (S 1) (S Float)



Example: blurring images

gaussianBlur ::
(depth `In` '[Word8, Word16, Float, Double])

=> V2 Int32 -- ^ Kernel size
-> Mat (S [h, w]) channels (S depth)
-- ^ Input matrix
-> CvExcept (Mat (S [h, w]) channels (S depth))

gaussianBlur takes a 2-dimensional image with an arbitrary
number of channels – the blurring is applied per-channel.



Example: blurring images

gaussianBlur ::
(depth `In` '[Word8, Word16, Float, Double])

=> V2 Int32 -- ^ Kernel size
-> Mat (S [h, w]) channels (S depth)
-- ^ Input matrix
-> CvExcept (Mat (S [h, w]) channels (S depth))

The shape of the image is preserved in the output.



Example: blurring images

gaussianBlur ::
([depth `In` '[Word8, Word16, Float, Double])

=> V2 Int32 -- ^ Kernel size
-> Mat (S [h, w]) channels (S depth)
-- ^ Input matrix
-> CvExcept (Mat (S [h, w]) channels (S depth))

The depth of the image is restricted to what OpenCV can work
with for this operation.



Example: blurring images

gaussianBlur ::
([depth `In` '[Word8, Word16, Float, Double])

=> V2 Int32 -- ^ Kernel size
-> Mat (S [h, w]) channels (S depth)
-- ^ Input matrix
-> CvExcept (Mat (S [h, w]) channels (S depth))

Finally, the function is pure (no IO/ST), but runs in an error
monad – CvExcept.



Example: edge detection

canny ::
Mat (S [h, w]) channels (S Word8)

-> CvExcept (Mat (S [h, w]) (S 1) (S Word8))

• In this case shape and depth are preserved...



Example: edge detection

canny ::
Mat (S [h, w]) channels (S Word8)

-> CvExcept (Mat (S [h, w]) (S 1) (S Word8))

• In this case shape and depth are preserved...
• ...but the channels aren’t: the output is only needs one

channel because it represents a mask over the original
image, with 0 where there is no edge and 255 where there
is no edge.



Mutable matrices

• Matrices can also be mutable, to allow in-place operation.
• Every Mat shape channels depth type can be turned

into its mutable version with the Mut type constructor.
• Mutable matrices work in IO and ST, much like Vectors

and Arrays.



Mutable matrices

thaw ::
(PrimMonad m)

=> Mat shape channels depth
-> m (Mut

(Mat shape channels depth)
(PrimState m))

freeze ::
(PrimMonad m)

=> Mut (Mat shape channels depth) (PrimState m)
-> m (Mat shape channels depth)



Mutable matrices: drawing circles

circle ::
(PrimMonad m, ToScalar color)

=> Mut
(Mat (S '[h, w]) channels depth)
(PrimState m)

-- ^ Matrix to draw on
-> V2 Int32 -- ^ Center of the circle
-> Int32 -- ^ Radius of the circle
-> color
-> Int32 -- ^ Thickness of the outline
-> CvExceptT m ()



Live demo!

let’s hope it works...



What’s in a binding?

canny ::
Mat (S [h, w]) channels (S Word8)

-> CvExcept (Mat (S [h, w]) (S 1) (S Word8))
canny src = unsafeWrapException $ do

dst <- newEmptyMat
handleCvException (pure $ unsafeCoerceMat dst) $
withPtr src $ \srcPtr ->
withPtr dst $ \dstPtr ->
[cvExcept|

cv::Canny(
*$(Mat * srcPtr), *$(Mat * dstPtr),
// TODO let user set the parameters
30, 200, 3, false);

|]



Questions?


