
What’s new in
GHC 7.8
Francesco Mazzoli, Erudify <f@mazzo.li>

Type holes
A type hole can be placed wherever a Haskell expression should go.
It tells you:
● Which type the compiler is expecting where the hole is;
● The types of bound variables.

Type holes
(.) :: (b -> c) -> (a -> b) -> (a -> c)

f . g = _

 Found hole ‛_’ with type: a -> c

 Where: ‛c’ is a rigid type variable bound by ...

 ‛a’ is a rigid type variable bound by ...

 Relevant bindings include

 g :: a -> b (bound at ...)

 f :: b -> c (bound at ...)

newtype coercions
The problem:

newtype Age = Age Int

toAgeMap :: HashMap Int String -> HashMap Age String

toAgeMap = ?

newtype coercions
coerce :: Coercible a b => a -> b

newtype Age = Age Int

toAgeMap :: HashMap Int String -> HashMap MyInt String

toAgeMap = coerce

newtype coercions
Coercible is not a normal type class, its rules being hard-coded in
GHC:
● ∀ a. Coercible a a
● ∀ a b. Coercible a b => Coercible b a
● ∀ a b c. (Coercible a b, Coercible b c) =>

Coercible a c
● ∀ a. given newtype C t1 … tn = C a =>

Coercible a (C t1 … tn)
● ∀ a1 … an b1 … bn.

(Coercible a1 b1, … , Coercible an bn) =>
Coercible (C a1 … an) (C b1 … bn)

newtype coercions
newtype Ptr a = Ptr Addr#

Coercible (Ptr CInt) (Ptr CString)?

Type families
type family Key (f :: * -> *) :: *

class Functor f => Lookup f where

 lookup :: f a -> Key f -> Maybe a

type instance Key [] = Int

instance Lookup [] where

 lookup xs ix | ix < 0 = Nothing

 lookup [] _ = Nothing

 lookup (x : xs) ix =

 if ix == 0 then Just x

 else lookup xs (ix - 1)

type instance Key (Map k) = k
instance Lookup (Map k) where
 lookup = Map.lookup

Closed type families
Type families are open, and thus overlapping definitions are forbidden:

{-# LANGUAGE DataKinds, TypeFamilies #-}

data Nat = Zero | Succ Nat

type family CountArgs (f :: *) :: Nat

type instance CountArgs (a -> b) = Succ (CountArgs b)

type instance CountArgs a = Zero

Closed type families
Lets us write closed “type functions”:

type family CountArgs (f :: *) :: Nat where

 CountArgs (a -> b) = Succ (CountArgs b)

 CountArgs a = Zero

Matching from top to bottom, like value-level functions.
Lets us write overlapping patterns, something we cannot do with open
families.

Overloaded lists
class IsList l where

 type family Item l :: *

 fromList :: [Item l] -> l

 toList :: l -> [Item l]

 fromListN :: Int -> [Item l] -> l

instance IsList (Vector a) where

 type instance Item (Vector a) = a

 fromList = V.fromList

 toList = V.fromList

 fromListN = V.fromListN

Minimal type class instances
class Bifunctor p where

 bimap :: (a -> b) -> (c -> d) -> p a c -> p b d

 bimap f g = first f . second g

 first :: (a -> b) -> p a c -> p b c

 first f = bimap f id

 second :: (b -> c) -> p a b -> p a c

 second = bimap id

Minimal type class instances
This instance emits no warnings, but every method invocation will result in
an infinite loop:

class Bifunctor (,) where

Minimal type class instances
class Bifunctor p where

 {-# MINIMAL bimap | (first, second) #-}

 bimap :: (a -> b) -> (c -> d) -> p a c -> p b d

 bimap f g = first f . second g

 first :: (a -> b) -> p a c -> p b c

 first f = bimap f id

 second :: (b -> c) -> p a b -> p a c

 second = bimap id

Typed TemplateHaskell
● TExp a, like Exp but indexed by the type of the contained

expression.
● To introduce TExps we use typed quasis ([|| … ||]) or typed

splices ($$x).

compose :: Q (TExp (b -> c)) -> Q (TExp (a -> b))

 -> Q (TExp (a -> c))

compose f g = [|| $$f . $$g ||]

We can safely compile and run TExps at runtime.

Safe GeneralizedNewtypeDeriving

● GeneralizedNewtypeDeriving + TypeFamilies =
unsafeCoerce

● In other words, GHC Haskell < 7.7 is unsound.
● The problem: GND treats the newtype C = C Int as “the same”

as Int, but they might have different instances for a type family.
● Fixed in 7.8 using “roles”.

But wait, there’s more!
● Parallel builds with ghc -j
● Improved IO manager
● Type natural solver
● -XNumDecimals
● Dynamic by default
● clang support
● iOS support and cross compilation

A more complete picture at https://ghc.haskell.
org/trac/ghc/wiki/Status/Oct13

https://ghc.haskell.org/trac/ghc/wiki/Status/Oct13
https://ghc.haskell.org/trac/ghc/wiki/Status/Oct13
https://ghc.haskell.org/trac/ghc/wiki/Status/Oct13

Future plans
● class Applicative m => Monad m
● Pattern synonyms
● Explicit type application

