
Type checking in the presence of meta-variables
(reprise)

Francesco Mazzoli

October 2014

Meta-variables and dependent types

Used for inference:

length : ∀ {A} → List A→N

length [] = 0
length (x :: xs) = 1 + length xs

The type becomes

length : {A : Set} → List A→N

And in invocations the type will be filled in automatically:
length [1, 2, 3] ⇒ length [1, 2, 3] ⇒ length N [1, 2, 3]

How does it work?

We want to instantiate meta-variables as needed when type
checking some terms.

This is usually accomplished in an on-demand fashion: when trying
to check equality between two terms in type checking we will
instantiate them accordingly if they are meta-variables.

How does it work?

length : {A : } → List A→N

will introduce a new meta-variable, say α.

The application of α to List : Set→ Set will prompt the type
checker to check α = Set, thus instantiating the meta-variable.

Inconveniences

Given

Foo : Bool→ Set
Foo true = Bool
Foo false = N

and

α : Bool
α =

How should we proceed when faced with definition

test1 : Foo α
test1 = true

?

Why can’t we just give up?

It’s tempting to just stop when facing such problems.

However, consider

test2 : (Foo α, α ≡ true)
test2 = (true, refl)

We don’t want to stop when type checking true : Foo α, because
checking refl : α ≡ true will let us type check the whole definition.

Why can’t we just pretend things are fine?

In the previous example:

test2 : (Foo α, α ≡ true)
test2 = (true, refl)

Can’t we just pretend we have checked true : Foo α and continue?
It doesn’t work in the general case, consider

test3 : ((x : Foo α)→ Foo (¬ x))→N

test3 = λg → g 0

We’ll generate constraints Foo α ≡ Bool, since x : Bool. If we just
continue and try to type check the body, we’ll get the ill-typed ¬ 0
by instantiating x .

So, we need to be more careful.

Elaborate!

Type checking will take a lump of syntax (Expr) and give us back a
term:

check : Ctxt→ Type→ Expr→ Term

The idea is that in check Γ A e t the resulting t might be only
an approximation of the original e.

Elaborate!

check will insert meta-variables when type checking is “stuck”,
which will be instantiated when type checking will be able to
resume.

Going back to

test1 : Foo α
test1 = true

Type checking the body of the definition we get

check · (Foo α) true β

Where

β : Foo α

Elaborate!

check will add constraints to ensure that if possible we’ll type
check the original term fully.

Going back to

check · (Foo α) true β

We want to resume type checking when Foo α is unblocked, and if
we succeed instantiate β to the original term:

β := true

Things get messy

How exactly to handle this elaboration works is the question.

Ulf’s thesis, chapter 3, provides an account on how to do this – an
approach then developed in Agda.

A lot of poorly documented work in this direction has been done in
Epigram and Epigram2.

How it works in Agda

It’s pretty messy, but the basic idea is to type check normally, but
stopping and inserting meta-variables when unification is stuck.

We then need to put some quite complicated machinery in place to
resume checking when needed, instantiate “placeholder” variables,
etc.

Let the unifier do all the work

The idea is to convert a type checking problem

Γ ` e : A

Into a list of heterogeneous unification problems, of the form

Γ ` t : A ∼= u : B

Intuitively, by looking at the expression to check we build up a
series of constraints that make sure that A has the right shape.

Let the unifier do all the work

We can give this elaboration procedure a simple type:

-- I’ll use Γ ` t : A ∼= u : B as a nicer notation
data Constraint = Constraint Ctxt Term Type Term Type

-- I’ll use JΓ ` e : AK as a nicer notation
elaborate : Ctxt→ Type→ Expr→ TC (Term, [Constraint])

TC is some monad that lets us add meta-variables:

newMeta : Ctxt→ Type→ TC Term

Expr

We’ll write the elaboration much like we’d write a type checker
without meta-variables.

Given a simple type expression type

data Expr
= x -- Variable
| -- Meta-variable
| Set -- Type of types
| (x : Expr)→ Expr -- Function type
| λx → Expr -- Abstraction
| Expr Expr -- Function application

Term

And terms

data Term
= x -- Variable
| α -- Meta-variable
| Set -- Type of types
| (x : Term)→ Term -- Function type
| λx → Term -- Abstraction
| Term Term -- Function application

type Type = Term

Variables, meta-variables, Set

JΓ ` x : AK = do
let B = lookup x Γ
t ← newMeta Γ A
return (t, [Γ ` x : B ∼= t : A])

x : A ∈ Γ
Γ ` x : A

JΓ ` : AK = do
t ← newMeta Γ A
return (t, [])

JΓ ` Set : AK = do
t ← newMeta Γ A
return (t, [Γ ` Set : Set ∼= t : A])

Γ ` Set : Set

Dependent function type

Γ ` Dom : Set Γ; x : Dom ` Cod : Set

Γ ` (x : Dom)→ Cod : Set

JΓ ` (x : Dom)→ Cod : AK = do
(Dom′, cs1)← JΓ ` Dom : SetK
(Cod ′, cs2)← JΓ; x : Dom′ ` Cod : SetK
t ← newMeta Γ A
let c = Γ ` ((x : Dom′)→ Cod ′) : Set = t : A
return (t, c :: (cs1 ++ cs2))

Abstractions

Γ; x : Dom ` t : Cod
Γ ` λx → t : (x : Dom)→ Cod

JΓ ` (λx → e) : AK = do
Dom← newMeta Γ Set
Cod ← newMeta (Γ; x : Dom) Set
(body , cs)← JΓ; x : Dom ` e : CodK
t ← newMeta Γ A
let c = Γ ` (λx → body) : ((x : Dom)→ Cod) ∼= t : A
return (t, c :: cs)

Application

Γ ` f : (x : Dom)→ Cod Γ ` arg : Dom
Γ ` f arg : Cod [x := arg]

JΓ ` e1 e2 : AK = do
Dom← newMeta Γ Set
Cod ← newMeta (Γ; x : Dom) Set
(f , cs1)← JΓ ` e1 : (x : Dom)→ CodK
(arg , cs2)← JΓ ` e2 : DomK
t ← newMeta Γ A
let c = Γ ` (f arg) : Cod [x := arg] = t : A
return (t, c :: (cs1 ++ cs2))

What about unification?

We have constraints of the form

Γ ` t : A ∼= u : B

We can convert them to homogeneous constraints

Γ ` A ∼= B : Set >> Γ ` t ∼= u : A

Where >> is a sequencing operator that has the unifier solve the
first constraint before attempting the second.

But we lose solutions – the types might be similar enough to
advance unification of the terms, while with homogeneous equality
we demand the types to be equal first.

What about unification?

We can also leave the constraints as they are, and have the unifier
solve heterogeneously, by making sure that the types have a rigid
head before trying to compare the head of the terms.

Γ ` t : A ∼= u : B

Becomes

Γ ` t : A ∼= u : B ∧ Γ ` A : Set ∼= B : Set

However, we still lose solutions.

What about unification?

Consider what happens when unifying

Γ ` (λx → t) : (x : A)→ B ∼= (λx → u) : (x : S)→ T

We’d like to go ahead and compare the bodies...

Γ; x : ? ` t : B [x := ?] ∼= u : T [x := ?]

With one context, we need to make sure that A ∼= B first.

What about unification?

Gundry & McBride solved this problem with “twin variables”.

I think it’s simpler to just keep two contexts:

(Γ ` (λx → t) : (x : A)→ B) ∼= (∆ ` (λx → u) : (x : S)→ T)

Becomes

(Γ; x : A ` t : B) ∼= (∆; x : S ` u : T)

What about bidirectional type checking?

What to do about

I Implicit arguments;

I Overloaded constructors;

I Type classes (canonical structures);

I ...

