
Epigram 2 Design Issues

A Doubtless Contentious Sequence of Names

May 31, 2006

1 Introduction
The purpose of this document is to pull together various vague ideas which have been
circulating about what Epigram 2 might comprise. It is unlikely to be the first or last such
document.

2 Epigram’s Core Type Theory
A teacup in which lurks one of Type Theory’s more mediocre meteorological misfortunes
is circumscribed ‘Typed λ-abstractions or untyped λ-abstractions?’. We say ‘Yes.’. That
is to say, we so favour an explicitly bidirectional typechecking, separating the processes
of checking a type prescription and inferring a type description, that we even separate the
syntactic categories of terms (respectively TERM↑ and TERM↓) to which they apply. Here
is the shape of things to come:

TERM↑ ::= TERM↓ : TERM↓

| VAR

| TERM↑ ELIM(TERM↓)
| CONST

| ΠVAR :TERM↓ ⇒ TERM↓

| λVAR :TERM↓ ⇒ TERM↑

TERM↓ ::= TERM↑

| λVAR ⇒ TERM↓

ELIM(X) ::= X

CONST ::= ?

Some observations:

1. If you can infer a type, you can certainly check one. If you need to infer a type from
a term which is only checkable, you had better provide the type explicitly.

2. Suitably labelled things live in TERM↑: we know what Π and ? make, and we know
what their pieces should be. Just like type annotations, suitably informative pieces
of syntax effect the ‘good’ change of direction.

3. Elimination behaviour is postfix, in the traditional style of application and projection.
We only have application here so far. The definition is parametric because we’ll be
recycling it in a minute. In general, we infer the type of the target and this tells us
how to type the pieces of its eliminator. That is, we don’t infer types of things from
the way they are used, but we do check that things are used properly.

Brick my shorts! There’s a vaguely sensible way to give a small-step semantics to this
syntax. We don’t need one, but here it is anyway. The only way the untyped canonical
forms can get into a position to be used is to have a type annotation, so we can produce the
labelled version.

(λx :S ⇒ t) s β t[s : S]
λx ⇒ t : Πx :S ⇒ T τ λx :S ⇒ t

1

2.1 Evaluation Semantics
What we really use is an evaluation semantics. What’s a value?

VAL ::= VAR SPINE
| CONST
| ΠVAR :VAL ⇒ VAL
| λVAR ⇒ VAL

SPINE ::=
ELIM(VAL)

∗

As you may notice, every VAL corresponds to a TERM↓, in particular, one with no
explicit typings or labelled λs. Correspondingly, we shall let VAL ⊂ TERM↓ henceforth.
We define two operations mutually, elimination and instantiation. Elimination is denoted
by juxtaposing a VAL with an ELIM(VAL).

x ~e e =⇒ x ~e e
(λx ⇒ v) u =⇒ v[u]

Elimination readily lifts to a sequence of eliminators in the obvious left-nested way.
Instantiation is denoted by postfixing−[vn; . . . ; v0] an environment of values to instantiate
the innermost free variables. We write γ to stand for such an environment and γx to indicate
the value given for x. Environments which are ‘too short’ pad out, mapping outer free
variables to themselves. Instantiation lifts functorially to sequences of eliminators.

(x ~e)[γ] =⇒ γx ~e[γ]
c[γ] =⇒ c
(Πx :u ⇒ v)[γ] =⇒ Πx :u[γ] ⇒ v[γ;x]
(λx ⇒ v)[γ] =⇒ λx ⇒ v[γ;x]

Note that the only interesting case is the variable case, which is where instantiation
might cause some elimination. The remaining cases are reassuringly structural. This is a
general pattern: in order to give semantics to an extended theory, we shall need only to
extend elimination explicitly.

We may now say what evaluation t† is for terms (of either orientation) and lifting func-
torially to eliminators. It’s just the obvious structural thing, discarding unnecssary anno-
tations and replacing textual elimination with semantic elimination. Of course, −† is the
identity on values.

TERM↑ VAL

(t : T)† =⇒ t†

x† =⇒ x
(t e)† =⇒ t† e†

c† =⇒ c
(Πx :S ⇒ T)† =⇒ Πx :S† ⇒ T †

(λx :S ⇒ t)† =⇒ λx ⇒ t†

TERM↓ VAL

t† =⇒ t†

(λx ⇒ t)† =⇒ λx ⇒ t†

2.2 Typing Rules
We aim to give an algorithmic presentation of typing, which is not to say that we shall show
you the code, but rather that we shall take a little more care than is usual in the presentation
of judgment forms and rules. Each judgment corresponds to a monadic computation in
some monad supporting a context (assigning a type value to each variable) and a notion of
failure (here represented by the absence of an applicable rule). We shall thus be careful to
distinguish the inputs from the outputs in each jugment form and to write the latter after
the former. The traditional box is thus split in two!

2

type inference CTXT ` TERM↑ ∈ VAL

Compute the type which describes a TERM↑.

type checking CTXT ` VAL 3 TERM↓

Decide whether a given TERM↓ has the prescribed type.

value equality CTXT ` VAL 3 VAL ≡ VAL

Check the equality of values in a given type.

spine equality ` VAR SPINE ≡ VAR SPINE ∈ VAL

Check the equality of values in a given type.

context lookup a VAR : VAL

Look up the type of a variable in the ambient context.

context extension ` CTXT `
Check the validity of a context extension, relative to the ambient context.

The notion of CTXT used here has syntax

CTXT ::=
VAR :VAL

;∗

and it refers to a local extension of the ambient context, plumbed via the monad.
Let’s try to identify some of the conditions which rule systems like these should satisfy.

clockwise flow Schematic variables appearing in rules may only be schematically bound
in the inputs of conclusions or the outputs of premises. Scope flows clockwise from
the inputs of the conclusions, left-to-right through the premises, then down to the
outputs of the conclusions. Clockwise flow prohibits non-rules such as

(×) ` ? 3 S x :S† ` t ∈ T
` λx ⇒ t ∈ Πx :S ⇒ T

` Πx :S ⇒ T 3 f ` S 3 s
` f s ∈ T [s†]

which just make stuff up out of nothing. Similarly, the ‘equality reflection’ rule of
Extensional Type Theory is excluded by such considerations.

relative scoping Schematic variables must be used in a context compatible with their
schematic binding. You can check this by counting object bindings, introduced by a
local context, a binding operator or (anonymously) by instantiation. The application
rule is a good example. Non-examples include

(×) ` Πx :S ⇒ T 3 λx ⇒ f x ≡ f

no search For given inputs to a conclusion, at most one rule should be applicable.

No explicit mention of context extension jugments occurs in the rules of the theory.
Here are the rules

` `
` ∆ ` ∆ ` ? 3 S

` ∆; x :S `

Where do these rules show up? Even to consider, let alone derive a judgment, one must
fulfil its contract.

• ∆ ` t ∈ T
requires ` ∆ ` and either T is ? or ∆ ` ? 3 T

3

CTXT ` TERM↑ ∈ VAL

` ? 3 T ` T † 3 t
` t : T ∈ T †

a x :S
` x ∈ S ` ? ∈ ?

` ? 3 S x :S† ` ? 3 T
` Πx :S ⇒ T ∈ ?

` ? 3 S x :S† ` t ∈ T
` λx :S ⇒ t ∈ Πx :S† ⇒ T

` f ∈ Πx :S ⇒ T ` S 3 s
` f s ∈ T [s†]

Figure 1: type inference

CTXT ` VAL 3 TERM↓

` s ∈ S ` ? 3 S ≡ T
` T 3 s

x :S ` T 3 t
` Πx :S ⇒ T 3 λx ⇒ t

Figure 2: type checking

CTXT ` VAL 3 VAL ≡ VAL

` x0 ~e0 ≡ x1 ~e1 ∈ T
` X ~e 3 x0 ~e0 ≡ x1 ~e1

` ? 3 ? ≡ ?
` ? 3 S0 ≡ S1 x :S0 ` ? 3 T0 ≡ T1
` ? 3 Πx :S0 ⇒ T0 ≡ Πx :S1 ⇒ T1

x :S ` T 3 f0 x ≡ f1 x
` Πx :S ⇒ T 3 f0 ≡ f1

Figure 3: value equality

` VAR SPINE ≡ VAR SPINE ∈ VAL

a x :S
` x ≡ x ∈ S

` x0 ~e0 ≡ x1 ~e1 ∈ Πx :S ⇒ T ` S 3 s0 ≡ s1
` x0 ~e0 s0 ≡ x1 ~e1 s1 ∈ T [s0]

Figure 4: spine equality

4

• ∆ ` T 3 t
requires ` ∆ ` and either T is ? or ∆ ` ? 3 T

• ∆ ` T 3 t0 ≡ t1
requires ∆ ` T 3 t0 and ∆ ` T 3 t1

• ` x0 ~e0 ≡ x1 ~e1 ∈ T
requires a x0 :S0 and a x1 :S1 for some S0, S1

guarantees ` x0 ~e0 ∈ T and ` x1 ~e1 ∈ T

• a x :S
guarantees ` ? 3 S

To check that a rule satisfies its contracts, assume the requirements of the conclusion
and check the requirements of the premises left-to-right, then deliver the guarantees of the
conclusion.

5

